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ON STEIN'S ESTIMATOR

Khursheed Alam* and James S. Hawkes
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ABSTRACT

Stein's estimator for k normal means is known to

dominate the maximum likelihood estimator fork >3 if the

loss is quadratic. In this paper we have derived certain

optimal properties of Stein's estimator for a more general

loss function. It is shown that the estimator is minimax

in an empirical Bayes sense for the generalized loss function.
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1. Introduction. Let X = (XI, ... , Xk be a vector of k

independent observations from k normal populations, where

x. N(eil), i = 1, ... , k. We consider the problem of

estimating the vector e = ...I ek). Let

6(X) = (61 (X), ..., 5k(X))

i l 
-where 6M(X) is an estimate of ei" Let the loss be squared"1 error, given by

1 2 1 k 2(1.1) L(6,6) k f S-6 = -e i)

0The maximum likelihood estimator 6(X) = (XI, ... Xk has

*risk equal to

0 0R(8,6 O) = Ee L(e,6 O) 1

for each 9. James and Stein (1961) showed that the estimator

S (X), given by

(1.2) M = (1-k )X.11

where S : HX<, has risk R(6,5 )<1 for all values of e,
* 0

if k> 3. That is, 6 (X) dominates 3 (X). Therefore, the

j .maximum likelihood estimator is inadmissible. Even though

onlv X. seems to be relevant to e., it is interesting to note

that the estimate 5i (X) depends on the entire vector of

observations X.

The surprising result of James and Stein has stimulated

considerable research in the last two decades, on the problem
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of estimating the mean of a multivariate normal distribution.

For reference to some recent work in this area, see Alam (1975)

and Berger and Bock (1976). Almost all the known results

assume a quadratic loss, chiefly for the reason that nonqua-

dratic loss is difficult to handle mathematically. In this

paper we have deviated from the general trend. We consider a

more general loss function, given by

1 k 2
,, (1.3) L(6,6) [[~

w m <L is a positive integer, and obtain the risk of

6 (X), using the generalized loss function. In the sequel we

shall denote by R(e,6) the risk of an estimator 6(X) with
respect to the loss (1.3).

The maximum likelihood estimator has a constant risk,

given by

(1.4) R(6,6) Fm~ (M+)
(m+22

On the other hand, R(e,6 ) is a function of 1!I- for m = 1.

For m >1, let R (,6) denote the average value of R(',3 )

with respect to the distribution of e, uniform on the sphere

(1.5) H lC =

with center at the origin and radius equal to vT In the

following section it is shown that

f1o) R a oX,f * if i R(9, i

for all values of N , if k is sufficiently, large.
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The proof of (1.6) involves very difficult computation.

It is perhaps the strongest result we can show for Stein's

e.timator, since 6 is designed for a spherically symmetric

loss, whereas (1.3) is spherically non-symmetric. On the

other hand, if there exists an estimator which has smaller

risk than 6 with respect to (1.3), its risk function is

likely to be mathematically intractable. Therefore, the

inequality (1.6), which is the main result of this paper,

is significant, even though we should look for a spherically

non-symmetric estimator.

aIrl zO61g o

/ Is .
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Let m I. Consider a Bayesian approach. Suppose that

the I.'s are independently normally distributed with mean1

zero and variance A. A Bayes estimator of e with respect to
the given prior is 5(X) where

(1.7) 6i(X) = (l-B)X i  , i=l, ..., k

B = 1/(l+A).

The Bayes risk is equal to 1-B.

If B is not known then S is .a sufficient statistic for

2
B, and BS is marginally distributed as Xk , chi-squared with

k degrees of freedom. Let B(S) be an estimator of B.

Substituting BtS) for B in (1.7) we get an empirical Bayes

estimator -(X), given by

1.3 K.iX) = il-B(S))X i  i=1, ..., k.

Let .:(B,-) denote the Bayes risk of 4. The difference between

B,. 0 ) and the Bayes risk is equal to B, and

B ) - (B,,{) : B(T)-3)2
BB

"here BF " ek

:or B(S i- c e have iX) = X!, and the left side of

0. 9 is u o F t ,. 01fro InL: Iorris 11.1-3) have shown that
Nx
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the minimax value of the right side of (1.9) is equal to

2t Thus Stein's estimator is minimax in an empirical Bayes

sense, considering the problem of estimating B with loss

[. function, given by

B -B)2L(B,B) B

A similar result on the minimax property of Stein's estimator

is obtained for the generalized loss (1.3).

2.Main results. First we compute a Bayes risk of the esti-

mator 6(X) given by (1.8), using the loss function (1.3). We

make the Bayesian assumption e. N(O,A) as a convenient mathe-d d
matical tool. Then marginally, Xi - +A) and BS

Let r be a non-negative integer, and let

r  1
(2.1) dr r-

E* 2r ) i r
(2.2) cr = )/S(il

1 * k xr ,sr
(E (Y X M(E S))i=I 1

Srd

,+r)

where E denotes expectation with respect to the marginal

distribution of the X.'s. The second line in !2.2) follows
I
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k 2 r
from the fact that the distribution of ( x x. )/Sr doesi=l 1

not depend on A, that S is a complete and sufficient statistic

for A, and hence S and Q k x2r)/S r are independently distri-
i=1  1

buted. Note that E X. = d

Conditionally, given X.

3eix 4N((l-B)Xi l - B)

Using (2.3) we obtain after simplification, the Bayes risk of

6 (X), given by

(2.4) &(B,6) c d (m )(l-B)rE*(Sm-r(B(S)-B) 2m-2)
r= 0  m- rr 2r

[ c d m -B)
r m-r r2)

'B(X +2 mr/B) 
2m-2r

k_ _ __ _ _ - a;El;
B

!B *2-Zr/  m-2r

-M m-r r (:'k+mr /B)
: a B (1-B) E; (-1~r=O r.B

,hThere

a= d 2m ,m-r kk
r r-r r -r r)
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IT 2rm

-.(2r) .(r+4) P(m-r4l)

m d
r m

The Bayes risk of Stein's estimator is obtained by

.1 putting B(S) = in (2.4). Then

( 2 .5 ) o ( B 6 = a B m -r ( 1 -B ) 
r  E k -2  I- .--

r= 0 r T 2-2

r r-Xk+22r

-- a Bm-r(l-B)r -i(-2m+2r, -- 2-- m+r;- )k
r= 0  r 2

b Bm-r (1-B )r
r=0  r r

whe re

a a~a+l) X-
_(a,b;x) = 1 x + 7+l) 2 .

denotes the confluent hypergeometric function, and

_2(2.6) b = ,(-2m+2r, k-2k

r ' ? m r;

Remark 1: We have that b = land b - 0 as k- for r m.
m r

The confluent hypergeometric function (a,b;x) satisfies tihe

equat ion
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x d (b-x) y - ay-- 0dx + dx-

The-above equation shows that for a <0, y >0 and b<x <0, y

is a convex function of x when __> 0. Therefore, if v = 0
dx-

for x - then ddx< 0 for'all x< 0. Hence, b is decreasing
dx- r

in k for r <m, and therefore there is a minimum value of

k = km , say, depending on m, such that b <1 for r =01,...,m

mum value of k for which b0 <1. Since
an llk> Nmria Omptto-hw htki h ii

--mom

m
Q(B,5 :) a -r (1-B) = d

r=0 M

we have from (2.5) that

(2.7) p(B,6 < 0 (B, )

for k > k and all values of B.
m

d 2Let V () a non-central chi-squared with k degrees

of freedom and non-centrality parameter ,I I . The
following lemma gives a formula for R (;,, ), the average

value of R(5,6 ) on the sphere Ii' =.

Lemma 2.1.

- M k V ( -m)(2.8) R ( *,)= - (-1)ra b E(_-(-r, M

k - r r r -- -T r,

m )r r- k._

_ ) r ( 1t r)-(Mtr= 1) ar r-t=() " t
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Proof: Let U d 2k/B. Apriori, 9 dN(0,A) Therefore

? Axk. The right side of (2.8) is a function of
2

Si equal to g( e1812), say. Taking expectation with
2

respect to the distribution of 1l 211, we get

(2.9)

2 C) m _,r - k *U U-rn
E - ( k (1)r a b EC(T(-r,k-m; U(U) )

k r rk

F(-M) r=0 r - - -

~m S a Bm-r (1-B)r

r=0

- p(B,6 ) from (2.5)

d
Since 0.e N(o,A), the conditional distribution of

1

S given 113i! = A is uniform on the sphere KS9 =

Therefore

(2.10) :(B,6*) = E R ( K K! ,6 *

where the expectation on the right side of (2.10) is with

respect to the distribution of - Since the distribution

o f 2 is complete for B, from (2.9 and 2.1 we !Mivo

(2.11) R U ,- 3 : g
-J

for all values of "9I From (2.111 we get the first

equality in (2.S). The second line in (2.83) is obtained from

the first line, using the following formula.

_k-

1 -m+t /2 -r 1-_1M+t+r)

~.12 E() =e 7-- = ( [) -
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X/ r- 2 kX
er(k) - m ' ; 2-2

k_r (--M+t) k X

2

A The lemma is proved. Q.E.D.

Remark 2: The formula (2.8) can be written as

(2.13)k
m r tr-~

R(X,6 (-l)rarbr (l) tr E(-m+t
T= r r Y t=O r(k-m+t)

m V -m~t

-t=0 et E(-Z)~t=O

where

m r+t rb r 2)

r=t r r t I(k-m+t)

The values of et for t = m and m - 1 are computed easily.

We have e = d and
m m

e (k-2)- mdm- 1 2k m

Note that the risk of the maximum likelihood estimator is

equal to dm and that for m = 1, that is for squared error loss,

we have

(2.15) R(9,6 ) = R (118 ,1

11
(k-2)

1 (
-- R(a,3 )



We shall now obtain the main result. Let m>1.

From the integral representation of the confluent hyper-

geometric function, given by

(~b'x = r(b) eXU a-I b-a-l
ra) F (b-a) l u (l-u) Idu b>a>O10

JO

we find that the value of _(m-t, 7 ;- 7 ) lies between 0 and 1,

and that it tends to 1 as k o. Since b 1 and b +0 asI m r

k o- for r < m, from (2.8) we have that

(2.16) R (X, ) 0 as k+

On the other hand, as X- the summation in the second line

on the right side of (2.13) is dominated by the sum of two

terms, equal to

(2.17) e + ernl E(V)-l d (-k EV

< ,m k-2)"?

Hence

(2.18) R (x,a) dm

for sufficiently large values of A.

Next we consider the case in which both k and X are large.

Expanding br , given by (2.6), in negative powers of k we find

that b= 1, b =- and br 0(k 2) for r < m-l. Therefore,mM-1 k r

for large k, the summation on the right side of (2.8) is

dominated by the sum of two terms, equal to D, say where

m r i t

(2.19) D = . ra h b 7r] , -

r~m- r t=O -

*'7 7 ,
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m rrk k
= er t~' r~~ab r (-1) (f m+t,:;. 7)

m 1))~r ( ra b r 1) ( kmIt) k
rm-l t=O r, (.L+T~) r' (--m+t)

= Em ~ l~a (1 t~)A/2 )mt 2T
Arm-l 1) r r = t (-7R/2Tc

-2
+ 0O(k )

where T is a random variable distributed according to the

Poisson distribution with mean equal to X/2 and c

(m-t)(m-t+l)/2. After simplification we get

D d E T I i T 2~m -m(m+l)k/2 -2

2(Tk2) KO/ )

d dE T/ 2 Ml1(T) + O(k- 2)

where ()<1for k > 4 .m. Now

<1 - k/2
<- ET+k/2

X+ k

< for < '
- +k

Therefore

R (\,~ < d
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for sufficiently large k and X <k 2 . On the other hand, from

(2.13) and (2.17) it follows that the above inequality holds

2
also for fficiently large k and X >k Therefore, we have

the following theorem.

Theorem 2.1. Let X 2 Given a positive integer m,

there exists a value of k = k  say, depending on m, such

that, R (X,6 ) <d = R(,6) for all 6 and k> k
m -m

Next we show that Stein's estirmator is minimax in an

empirical Bayes sense. From (2.4) we have

~2r~m r m- B (Wr )

(2.20) (B6) (m)Br (1-B)m-r E B -

r=O r r

where Wr X 2 +2r/B. In deriving the above result we have

assumed that 3. d N(0,A). We can stop short of full Bayesian-1

hood by assuming that A or equivalently B, is unknown and must

be estimated. That is, we become empirical Bayesian, considering

B(W r ) as an estimate of B.

Consider a beta prior distribution on B with density

function

g(B) = B - (1-B) ' - 1 '> +n) . >

Let

2(B,6) = (o(B,6) (1-B)md )/B
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From (2.20) we have

(2.21)

IIm 
I(

Q(P6)g(B)dB > 7' dfI(n)Br-],(lB) m-rf -Sr. - 1 g(B)dB
JO r~l1

whr 1 , mr+n-1 -BW /2
fo B' (1-B)" e- r dB

i f 0 B (1-B) m-r+ T)-i1e B~r /2dB

e r d

(.,. 1 ~~+m- r+~+;-W2 -W /2)

From the asymptotic property of the confluent hypergeometric

function (see e.g. Erdelyi (1953) § 6.13.1) it is seen that

(2 .2 2) -I r r I k+ 2 -2 as W ~k-2 k-2 r

Let 0. Then B converges in distribution to :ero and

fr converges in distribution to ~. Therefore, .jW r converges

in distribution to 1, and from (2.21) we have

(2.23)

Sup.- B, 5) >Lim (B 1 B)d
B :-_O 0

Lim d (') mIB E kB
--- mj 0 -r=l r gWr 1
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Lim d ( mB (1-B)mr Ek- 2  2r, 0 ' 0r~l °"-1) g(B)dB

_ MJ0 _r1 r BWr

=Lir ((B,6 )g(B)dB
C-0 0

za 1 b
m -i

2m d
1 k m

=Sup d(B,6 ) for k k , say.
B -m

The last equality in (2.23) follows from the fact that

br = O(k ") for r < m - 1. Thus we have obtained the following

result from the empirical Bayes approach, considered above.

Theorem 2.2. The minimax value of the Bayes risk 3(B,5) is
2m* **

equal to T d = Sup £(B,5 ) for k> k
k B m

Remark 3: Clearly, the results given above are appli-

cable to the case in which the loss is a polynomial function

of the squared error with non-ne-ative coefficients. It

might be poSsible to extend the given results to the case in

which the loss is a monotone increasing convex function of

jthe squared error.

Table I below gives values of km and k for In 1(1)10.m m
For the iven values of In it is found that K : m where k mis

m m m

the smallest value of k for which (2.') holds. Table II below

gives values of R ( f'dform = "1)10 and and k = k

m 1ii
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0
Note that R(6,5) = dm . The asymptotic formula for large

negative values of the. argument of the confluent hypergeo-

metric function, given by

(a,b;-x) = F(b) - -" r(b-a) x (l+0(x ))

was used in the computation of R (A,6) for X = 100, 1000.

TABLE I - Values of k and km
m M

m 1 2 3 4 5 6 7 8 9 10

k 3 5 7 10 12 15 17 20 22 25

ii

k 3 5 3 10 13 iS 18s 2 24 27

*1m
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TABLE II Values of R (X,6 )/d for k k
m m

1 2 3 4 5 6 7 8 9 10

0 .6666 .5714 .8581 .5301 .8640 .5758 .9178 .6247 .9779 .6724

1 .7584 .5294 .6444 .4004 .6176 .4202 .6532 .4522 .6959 .4851

2 .8206 .5239 .5137 .3140 .4513 .3119 .4709 .3311 .5000 .3531

3 .8634 .5379 .4377 .2573 .3385 .2360 .3444 .2455 .3631 .2594

4 .8933 .5615 .3976 .2212 .2620 .1826 .2560 .1845 .2666 .1925

5 .9145 .5889 .3808 .1997 .2101 .1447 .1937 .1407 .1981 .1444

S6 .9299 .6170 .3790 .1886 .1753 .1179 .1494 .1089 .1491 .1095

7 .9412 .6440 .3866 .1849 .1525 .0989 .1178 .08581.1138 .0841

10 .9614 .7132 .4357 .2008 .1264 .0703 .0669 .04681.0554 .0410

15 .9757 .7899 .5302 .2640 .1454 .0672 .0442 .0257 .0236 .0165

0 .9823 .8361 .6066 .3346 .1899 .0863 .0477 .0231 .0161,.009'

25 .9860 .8661 .6642 .3995 .2405 .1152 .0618 .0278 .01601.0082

100 .9966 .9642 .3958 .7640 .6397 .4744 .3515 .2207 .1410i.0 20

1000 .9996 .9964 .9893 .9746 .9589 .9340 .9105 .S769 1 .8468 .8061

I6
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